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Correlation functions and Green functions : 
zero-frequency anomaliest 

G. L. LUCAS: and G. HORWITZgI 
Belfer Graduate School of Science, Yeshiva University, New York, U. S. A. 
MS. received 15th July 1968, in revised form 24th March 1969 

Abstract. Some problems associated with t h e  zero-frequency component of the 
correlation function J(O), its calculation from thermal Green functions and its physical 
interpretation are studied. Various proposals for determining J(O), which are not 
directly obtainable from the Green function, are examined and a new method proposed. 
The  related question of the zero-frequency limit of J ( w )  is also considered. 

1. Introduction 
Some limitations on the use of two-time ‘boson-like’ Green functions (Zubarev 1960) 

in the determination of correlation functions have recently been discussed by several authors 
(Stevens and Tombs 1965, Fernandez and Gersch 1967, Callen et al. 1967). We wish to 
examine and to extend these discussions with particular emphasis on the physical basis 
of the problems involved and to propose a new method for their resolution. 

Stevens and Tombs (1965) first noted that the zero-frequency component of the spectral 
distribution function J ( w )  is not in general determined by the Green function method. 
Fernandez and Gersch (1967) then gave an expression for J(0)  in terms of the exact 
eigenstates of the system. While their expression does not directly relate J(0)  to the Green 
function, they did suggest in the same paper a method which under certain conditions 
will determine J(0) from the Green function. The  method consists of introducing a sym- 
metry breaking term into the Hamiltonian, calculating the correlation function, and then, 
in the final step, letting the symmetry breaking term go to zeio. Their additional suggestion, 
that, since the correlation function and the Green function satisfy the same differential 
equation with the exception of an inhomogeneous term, a pole of the Green function for 
w = 0 implies the existence of a time-independent constant in the correlation function, 
does not take into account the fact that the two equations are associated with different 
boundary conditions. The  actual conditions for the existence of the constant are more 
complicated. 

Callen et aZ. (1967) approached the problem from a somewhat different point of view. 
Noting that the zero-frequency component of the spectral distribution function J ( w )  is 
associated with the infinite time behaviour of the correlation function, they suggested 
that J (0 )  be chosen in such a manner that the correlation function factors for infinite 
time separation, i.e. 

This factorized form does not in general agree with the rigorous results given by Fernandez 
and Gersch but represents an approximation through which irreversibility is introduced 
into the system. It is subject to the objection that irreversibility is also usually introduced 
through the truncation of higher-order Green functions and that questions can arise con- 
cerning the mutual consistency of the various approximations. Cases also occur in which (1) 
would not be expected to hold and these would need to be approached by an alternative 
technique. 

lim (B(t’)A(t))  = ( B ) ( A ) .  (1) 
t’-ti.22 
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With these observations we shall consider the following questions : 
(i) Under what conditions are there anomalous contributions to J(0) and what physical 

(ii) What statements can be made about the closely related question of the lim J(w).  
interpretation can be ascribed to them? How can they be calculated? 

0 4  

2. The zero-frequency component 

Green functions. 
We begin by briefly reviewing the connection between the correlation and the relevant 

Although a differential equation can be derived for the correlation function 
a3 

(B(t’)A(t)  ) = J” dw ~ ~ ~ ( w )  expi- iw(t - t ’ ) )  (2). 
- m  

the boundary conditions are difficult to satisfy and one generally obtains the correlation 
function by first determining a related Green function, the analytic properties of which 
lead to considerably simpler boundary conditions. The retarded Green function is 
defined by the relation 

GA.B(t-t’) = ((A(t); B(t’))) = -ie(t‘-t)([A(t), B(t’)])  (3). 
where B [ t )  is a step function, the angular brackets represent an average over a grand canonical 
ensemble, A(t) and B(t’) are operators in the Heisenberg picture, and the expression in 
square brackets is a commutator. The  retarded Green function may also be defined in 
terms of an anticommutator, but we are concerned here with boson-like operators for 
which it is more convenient to use a commutator. If we define an effective density of states 
p( w )  by the relation 

p ( w )  = i{GA,B(w + is) - GA,B(w -is)} (4) 
we may then determine J (w)  for w # 0 from the expression 

p(w) = (e!”- l ) J ( w ) ,  w # O  ( 5 )  
However, J(0) is not determined by the Green function. 

is for p(w)  
One would like to determine J (w)  from a sum rule on J (w) ,  but the natural sum rule 

X J” dwp(w) = ( [A ,  BI ) (6) 
- x  

and we can only re-express this in terms of J ( w )  for w # 0, since (5) is only valid in that 
range. 

If J ( o )  is bounded in the neighbourhood of w = 0, we see from (2) that the correlation 
function (B(t’)A(t)) vanishes in the limit of infinite times. 

If, on the other hand, J ( w )  had the form 

J ( w )  = J (w)+c6(w)  (7) 
then the delta function gives rise to a const_ant contribution to the correlation function, 
and hence to an infinite time behaviour. J ( w )  can also contribute to-the infinite time 
behaviour if it is sufficiently singular at the origin. If, for example, J ( w )  should go as 
c’/w, this would contribute to the infinite time behaviour. In  this case the prescription 
of Callen et al. would consist of setting the sonstant c in ( 7 )  equal to (A) ( B )  and sub- 
tracting the infinite time contribution from J ( w )  from the general equation (2), since they 
would discard all but the factored result. 

The simplest case in which J ( w )  has a delta-function singularity is that in which 
A = B = Q,  where Q is a constant of the motion; then Q(t’) = Q(t)  = Q, and hence, 
since GQ,@ is defined in terms of a commutator 

so that 
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We notice that for this case the criterion of Fernandez and Gersch which states that 
a singularity in J ( w )  will appear if, and only if, G(w)  has a pole at w = 0 does not apply, 
since the Green function is identically zero. 

One can easily generalize the above discussion to operators of the form A = Al + A2, 
where A,  is a constant of the motion. We will give an example of this form below. 

3. The correlation function for density-density fluctuations 
In  this section we will consider the problem of density-density fluctuations in a non- 

interacting electron gas in order to establish a basis for the new method of determining 
J(0)  in the next section. We present results in terms of this simple example since they 
are in fact typical of many 'normal' systems, such as the high-density electron gas. 

Omitting the spin for simplicity, we consider the Green function <pq; pq+ >>, where 
p q  is the density fluctuation operator defined by 

and the ck and ck+ are the usual electron annihilation and creation operators. 
We first note that p o  is equal to the number operator N for the system and is therefore 

a constant of the motion. Hence, by our previous discussion, the Green function is identi- 
cally zero. As a possible way out of this dilemma, we consider the Green function for 
p # 0, calculate the correlation function and then take the limit p -+ 0. Carrying through 
the calculation, we find 

the Fermi distribution function f k  being expressed in terms of the energy ek which is 
measured with respect to the Fermi energy. The second equality can be confirmed by 
direct calculation. 

On the other hand, identifying ( p o + p o )  with N 2 ,  we find by direct calculation that 

although the fluctuation term is contained in both. 
We see therefore that by considering an alternative Green function to that which one 

would naturally tend to consider and then using a limiting process we obtain the correct 
fluctuations in N 2  although we are still lacking the term (N)2. 

If we could directly identify the constants of motion, we could use this method to cal- 
culate the fluctuations and add the square of thermal average of the constants of motion. 
We cannot always do this since quantities which are approximate constants of motion 
(frequently S2 operators), or as noted above of the type A = A1+A2, where Al  is a 
constant of motion, lead to difficulties. This latter case also causes problems with the 
application of the Fernandez and Gersch approach. 

Suppose we add a BCS-type pairing term 

A 2 ( a k + a - k L  S a - k a k )  
k 

to the Hamiltonian; po = N is then no longer a constant of the motion. A calculation 
of the X --f 0 limit of (po+po) i ,  from the Green function again does not correctly determine 
( p o + p o ) .  The  source of the error is that in terms of the operators which diagonalize 
HA, p o  still contains a part which commutes with HA. 
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4. Alternative Green functions 
We shall now discuss a method for calculating J(0)  by means of alternative Green 

functions which has a wide range of applicability. For definiteness and simplicity we 
consider the density-density fluctuation problem Q = 0. The  more general case is also 
easily treated. 

We recall that J (w)  is completely determined by the Green function except for w = 0. 
Inserting the expression for J ( w )  from (7) into (2) we find 

X 

(B(t’)A(O) ) = i d w  q w )  exp( - iwt) + c  (13) 
- m  

00 
and therefore that 

c = (B(O)A(O)) - 1 dw j ( w )  (14) 
- x  

so that, if we can calculate (B(O)A(O)) by some means, we can then obtain the complete 
correlation function (B(t)A(O)). 

Now in the case of density-density fluctuations we defined our Green function in terms 
of a commutator rather than an anticommutator because the density fluctuation operators 
pn, pn+ are ‘boson-like’ and the calculation is greatly simplified. Had we only been 
interested in the average 

and not in the general correlation function we could equally well have considered Green 
functions of the form 

( p o 2 )  = ( N 2 )  (15) 

2 <ck’pO; ck’’ i>* 
k’ 

The  operators are then ‘Fermi-like’ and we can use conveniently Green functions defined 
in terms of anticommutators rather than commutators. For these Green functions (5) is 
replaced by 

and the problem at w = 0 does not arise. 
For the general case we can then calculate J ( w )  for w # 0 by ‘boson’ Green functions 

and for w = 0 by ‘fermion’ Green functions. In  each case the natural choice, commuta- 
tors or anticommutators, is used. 

For the simple case under consideration one readily finds that J ( w )  = 0 and we cor- 
rectly obtain 

p(w)  = {eou + l ) J ( w )  (16) 

I \ 2  

The  general approach is also useful in spin-& problems in which one can replace S” 
by g-S-St and put the S+ and S- in opposite terms in the Green function. In  this 
method the problem of consistency also arises since results depend on the use of two differ- 
ent Green functions. 

5. The zero-frequency limit 
Let us finally turn our attention to the examination of the zero-frequency limit of 

J (w) .  The three characteristic types of results which we consider illustrate that the anoma- 
lies associated with the calculation of J(0) are intimately connected with other long-time 
or in some cases long-range behaviour such as characteristically occur for ordered systems. 

We first consider the case for which in the macroscopic limit J ( w )  is continuous for w 
in the neighbourhood of w = 0. In  this case, only the term in ( 7 )  containing a delta function 
contributes to the infinite time behaviour. If c = 0 we then find a normal behaviour for 
J (w) ,  as discussed by Abrikosov et al. (1963)’ for which lim J ( w )  = constant, giving no in- 

finite time contribution. Thus, for example, for density-density fluctuations we find for 
(0-0 
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small q in a non-interacting system pq(w)  N w ,  but 

and therefore for small w we find 

An evaluation for the high-density electron gas leads to a similar result. The  infinite time 
behaviour, if any, is then given exclusively by the constant, while the rest is obtained from 
the usual Green function method. 

The  second case we consider is that of a bound spectrum of bosons for which the 
chemical potential is non-zero. In  this case one must carefully treat the macroscopic limit. 
Thus for a system of non-interacting bosons at finite density n, taking A(0) = a,(O) and 
B(t) = a,+(t) as the boson annihilation and creation operators 

with the chemical potential being written ./B. For high enough temperatures and finite 
volume, cc < 0 and the spectrum has a lower bound eo > 0, so that p(w = 0) = 0;  for this 
case no problems arise. However, at a certain temperature for sufficiently large n if we let 
V -+ co, keeping n constant, then tl goes to zero. In  this case Jo(w) = 0 for w # 0, while 
Jo(0)  is, as always, undetermined by the Green function. Here, however, the presence of 
the Bose-Einstein condensation requires taking the macroscopic limit with care. One 
must take x not zero, but of order l/N, whence, writing x = (aN)-I,  

Jo (w)  = (eaw- 1)-l6 w +  - . i ;I 
Thus we obtain a well-defined zero-frequency contribution to J(0)  in the macroscopic 
limit if we define 

N - % ( w )  
= as(w). JO(W) j o ( 0 )  = lim- = lim 

N+m *v ea-1 

Thus in this case the GrEen function completely determines all results, but only after a 
careful limiting procedure. 

The last example which we shall discuss is one with a bounded spectrum, but with no 
analogue of the chemical potential present. The  case examined is that of spin-wave 
excitations in a ferromagnet. In  the absence of a magnetic field for sufficiently low tempera- 
tures, we can take the spin-wave energies to be 

E ,  = A q 2 .  (23 1 

],(U) = 6(w-Aq2)(eflw-1)-1 (21) 

We take A = S-,- and 3 = S,+, and then 

and it is most convenient to discuss the results in terms of 
iTJ 

(S,+S-,-)  = [ d w exp( - io + t)J,( U ) .  
U - m  

As we have noted previously, (So+So- )  is not determined from the Green functions; 
the Q -+ 0 limit of (25) diverges: 

lim (S,+S-,-> = lim {exp( -/3Aq2)- 1}-l = co. (26) 
q-10 q+o 
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?Ve then include an external magnetic field h in energy units. Then 

We are then able to obtain 
Eq(h) = Aq2 + h. 

(So+S,-), = (ebh-1)-I 

from the Green function as well as by direct evaluation. The  limit of h -+ 0 of this ex- 
pression also diverges. Notice this divergence persists also for a finite system, a q = 0 
mode corresponding to the rotation of the total spin.? The  divergence of J(0)  (for h = 0) 
is real and is to be identified with the infinite transverse susceptibility associated with the 
rotation of the whole system. For a macroscopic system this should be excluded either due 
to (i) astronomically long relaxation times or (ii) the presence of small perturbing fields. 
Thus either J(0) is to be discarded due to physical exclusion of rotations of the system or 
one can formally remove J(0) by retaining a field large enough for ebn-  1 < A', but 
small enough to  modify X (S,+S-,-) negligibly. 

q + o  

6. Conclusion 
In  conclusion, we have studied methods of calculating and interpreting J(0)  and 

lim J(w).  While J(0)  is not directly determinable by the Green function method, its con- 

tribution to the correlation function can frequently be calculated by considering a suitably 
defined second Green function. This provides an alternative approach to that suggested by 
Fernandez and Gersch, in which a symmetry breaking term is added to the Hamiltonian, 
or to that of Callen et al., in which J(0) is defined so that the correlation function factors 
for infinite time separation. 
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